262 research outputs found

    Robust Formation Control for Networked Robotic Systems Using Negative Imaginary Dynamics

    Get PDF
    This paper proposes a consensus-based formation tracking scheme for multi-robot systems utilizing the Negative Imaginary (NI) theory. The proposed scheme applies to a class of networked robotic systems that can be modelled as a group of single integrator agents with stable uncertainties connected via an undirected graph. NI/SNI property of networked agents facilitates the design of a distributed Strictly Negative Imaginary (SNI) controller to achieve the desired formation tracking. A new theoretical proof of asymptotic convergence of the formation tracking trajectories is derived based on the integral controllability of a networked SNI systems. The proposed scheme is an alternative to the conventional Lyapunov-based formation tracking schemes. It offers robustness to NI/SNI-type model uncertainties and fault-tolerance to a sudden loss of robots due to hardware/communication fault. The feasibility and usefulness of the proposed formation tracking scheme were validated by lab-based real-time hardware experiments involving miniature mobile robots

    Self-Organised Swarm Flocking with Deep Reinforcement Learning

    Get PDF

    Influence of Incident Wavelength and Detector Material Selection on Fluorescence in the Application of Raman Spectroscopy to a Fungal Fermentation Process

    Get PDF
    Raman spectroscopy is a novel tool used in the on-line monitoring and control of bioprocesses, offering both quantitative and qualitative determination of key process variables through spectroscopic analysis. However, the wide-spread application of Raman spectroscopy analysers to industrial fermentation processes has been hindered by problems related to the high background fluorescence signal associated with the analysis of biological samples. To address this issue, we investigated the influence of fluorescence on the spectra collected from two Raman spectroscopic devices with different wavelengths and detectors in the analysis of the critical process parameters (CPPs) and critical quality attributes (CQAs) of a fungal fermentation process. The spectra collected using a Raman analyser with the shorter wavelength (903 nm) and a charged coupled device detector (CCD) was corrupted by high fluorescence and was therefore unusable in the prediction of these CPPs and CQAs. In contrast, the spectra collected using a Raman analyser with the longer wavelength (993 nm) and an indium gallium arsenide (InGaAs) detector was only moderately affected by fluorescence and enabled the generation of accurate estimates of the fermentation's critical variables. This novel work is the first direct comparison of two different Raman spectroscopy probes on the same process highlighting the significant detrimental effect caused by high fluorescence on spectra recorded throughout fermentation runs. Furthermore, this paper demonstrates the importance of correctly selecting both the incident wavelength and detector material type of the Raman spectroscopy devices to ensure corrupting fluorescence is minimised during bioprocess monitoring applications

    A Nonlinear Estimator for Dead Reckoning of Aquatic Surface Vehicles Using an IMU and a Doppler Velocity Log

    Get PDF
    Aquatic robots require an accurate and reliable localization system to navigate autonomously and perform practical missions. Kalman filters (KFs) and their variants are typically used in aquatic robots to combine sensor data. The two critical drawbacks of KFs are the requirement for skilled tuning of several filter parameters and the fact that changes to how the Inertial Measurement Unit (IMU) is oriented necessitate modifying the filter. To overcome those problems, this paper presents a novel method of fusing sensor data from a Doppler Velocity Log (DVL) and IMU using an adaptive nonlinear estimator to provide dead reckoning localization for a small autonomous surface vehicle. The proposed method has only one insensitive tuning parameter and is agnostic to the configuration of the IMU. The system was validated using a small ASV in a 2.4×\times3.6×\times2.4 m water tank, with a motion capture system as ground truth, and was evaluated against a state-of-the-art method based on KFs. Experiments showed that the average drift error of the nonlinear filter was 0.16 m (s.d. 0.06 m) compared to 0.15 m (s.d. 0.05 m) for the state of the art, meaning that the benefits in terms of tuning and flexible configuration do not come at the expense of performance
    • …
    corecore